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ON T H E  BARTELS TECHNIQUE FOR TIME-SERIES 

ANALYSIS, AND ITS RELATION TO T H E  


ANALYSIS OF VARIANCE 


BY L. R. HAPSTAD 
Department of Terrestrial Magnetism 
Carnegie Institution of Washington 

I. INTRODUCTION 

IT HAS long been recognized that there is difficulty in applying the 
usual statistical techniques when there is correlation between suc- 

cessive items in any given sample. This trouble arises in many different 
fields: in economic time series the index number for any one day, 
month, or year is dependent on that of the preceding time unit. In 
sociology the number of strikes in progress a t  any one time is dependent 
on the number a t  some immediately preceding time. In agricultural 
experiments the yield of any plot will be high or low with the fertility 
of the adjacent region. This characteristic is known by various names, 
among statisticians as serial correlation, among physicists as nach-
wirkung or persistence. Various devices are used by statisticians to 
circumvent it, but the problem is by no means solved. For this reason i t  
may not be amiss to bring to the attention of statisticians an approxi- 
mate intuitive device used on similar problems by physicists, with the 
hope not only that the method in its present form might prove of some 
value to statisticians, but also that they may be stimulated into a more 
critical study of the technique. 

11. CORRELATION OF TIME SERIES 

Simple examples showing the difficulties introduced by the applica- 
tion of formulas derived for random samples to data involving per- 
sistance are the correlations between time series. In  a well-known paper 
Yule1 gives as an example a correlation between Church of England 
marriages and standard mortality, for which a coefficient of +0.9512 
with the very small standard error of 0.0140 was obtained. He points 
out that in spite of its "high significance" (P<<0.01) such a result in 
this case is obviously nonsense, and shows that in the series in question 
there exists a high degree of positive serial correlation, that is, suc- 
cessive observations are not independent but are related in such a way 
that high values are likely to be followed by other high values. He 
does not however suggest any way to obtain a valid measure of the 
significance of a correlation coefficient between series of this kind, con- 

1 U .  Yule, Journal Royal Statistical Society, vol. 89, pp. 1-69, 1926. 
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eluding only that, in a series "in which successive terms are closely 
related to one another, the usual conceptions to which we are ac- 
customed fail totally and entirely to apply." 

The above example was deliberately chosen to develop a case of 
reductio ad absurdunz, but in a serious work, The Social Aspects of the 
Business Cycle, we find a similar example. For the correlation coeffi- 
cient between prosperity and mortality Thomas2 is surprised to find 
the positive value $0.31 with a standard error of only 0.12 making the 
result "significant" (P=0.01) according to the usual rules. Such cases 
have led to the absurd situation in which the statistical tests for sig- 
nificance are often ignored and, as quoted by Mitchell13 '(. . . an ex- 
pert . . . (does) not consider of much value a correlation coefficient 
below 0.90." 

To statisticians of the sociological-economic school the above situa- 
tion apparently remains as an unexplained anomaly, for as recently as 
1935 in discussing the correlation by Thomas above, Bartlett4 suggests 
only that the result obtained must be due mainly to a particular co- 
incidence with the influenza epidemic, and concludes that "If neither 
series is random no valid test . . . (for the statistical significance of 
correlations) . . . can be recommended." 

Seeking a more general explanation of the above anomalous situa- 
tion we recall that the formula for the correlation coefficient is derived 
on the assumption of independence of successive observations. To test 
our data for independence we may choose to use the fundamental 
proposition that if a variate is distributed with standard deviation 
a(l) ,  then the mean of a random sample of h such variates is distributed 
with standard deviation a(h) =a(l) / l / i .  That is, for independent ob- 
servations the ratio 

should be statistically constant and equal to unity if enough observa- 
tions are used. 

Taking successively h =3, 5, 9 for the marriage series in Yule's data 
we get the curve d h  in fig. 1.Obviously the requirement that dh =unity 
is not satisfied, so the data are not independent. Similarly for Thomas' 
data we get for h =5, 10, 15 the curve dh in fig. 2. Again it is clear that 
the data are not independent, and the usual formula for the correlation 
coefficient should not be used. 

Thus, we are confronted with the problem of estimating in some way 

D .  H.  Thomaa. The Social Aspects of the Business Cycle (C. P .  Dutton, 1925). 
W. C. Mitchell, Business Cycles (National Bureau of Economic Research, 1927), p. 270.
'M. S. Uartlett, Journal Royal Statistical Society, vol. 98, pp. 536-543, 1935. 



the number of independent components among any number of de- 
pendent ordinates. 

Fig. 1 (Upper panel).-Number of effectively independent observations in Yule's example. 

Fig. 2 (Lower panel).-Number of effectively independent observations in Thomas' data. 


111. THE BARTELS TECHNIQUE 

A rigorous solution to the problem is difficult, but an approximation 
is available and is much used by physicists, who are convinced that 
"it is useless to labor over the farthings when the pounds are uncer- 



tain." The technique referred to was developed by Bartels5 in the study 
of quasi-persistent periodicities, and can be explained as follows. 

TABLE 1 
ORDINATES OF A TIME SERIES 

Nine-Year Groups of Years 
Year 

I I1 111 I V  v VI VII 

0 133 133 116 126 94 99 102 
1 94 136 101 109 92 99 119 
2 79 166 97 131 86 110 94 
3 83 96 102 126 77 132 101 
4 61 69 104 110 83 100 100 
6 77 61 98 81 108 80 101 
6 93 83 107 92 87 68 107 
7 97 106 88 90 84 38 108 
8 120 121 128 93 88 49 104 

Consider a set of observations like those in table 1. We may test 
these data for independence, as above, by means of the formula for 
ds in eq. (1). The result is the curve in fig. 3. Again the requirement 

SCALE OF hk 7 ISCALE OF EFFECTIVELY INDEPENDENT ORDINATES 

Fig. 3.-Number of effeotively independent observations in Greenstein's data: 

that dh =1is not satisfied and the data are not independent. However, 
a peculiar feature of the curve may be noted. Above about h =5 the 
value of the ratio is nearly constant and equal to (say) d, =2.5 in the 

5 J. Bartels, (a) Thesis (Got.tingen, 1922); (b) Zur Mwpl~ologie Geophysikalischer Zedfunklionen, 
Bitzungsberiohte. Preuss. Akad. Wissensoh., Phya.-Math. Klasse, pp. 604-622, 1936; (0) Terrestrial 
Magnetism, vol. 40,pp. 1-60, 1936; (d) "Verbogene periodisohe Ersoheinungenn in Lubberger's Wahr-
scheinlichkeilen und Schwankungen (J. Springer, Berlin, 1937),pp. 66-73. 



present case, so that for values H of h sufficiently large, the quantity 
(H/d,)a2(H)/a2(1) is unity. Comparing this with eq. (1) we see that 
a(H) is related to a(1) as if the averages of H successive ordinates were 
derived from H/d, independent components. For this reason we call 
H/d, the number of "effectively independent components among H 
successive ordinates." This process in effect calibrates our hitherto 
unknown scale of effectively independent components by means of 
the ((calibration point" d,. 

Bartelssd illustrates the meaning of the parameter dh as follows. 
Consider a series of values S1=all a2, as, ar, . . . taken at  random from 
an infinite supply of values with standard deviation a(1). Divide this 
series into sets of h successive values and form averages for each set; 
the standard deviation for these averages should be statistically 
a(h) =a(l)/z/% if the original members of the sequence S1 are inde- 
pendent. Now form a new series S d  from S1by repeating each value d 
times; for instance, with d=4,  8 4  would be a ~ ,  all all a ~ ,  az, a2, az, 
a2,. . . . The series S d  will still have the standard deviation a(l), but 
if it is divided into successive groups of h =dh' (h' any integer)6 the 
standard deviation for the average of these groups will be 

Conversely, if only ad(h) and ad(1) were known for the series S d ,  the 
number d of identical ordinates could be found by means of the formula 

For actual time series no rigorous treatment is possible, but so far 
as they may be considered analogous to the series Sd,differing only in 
the degree of correlation between successive items, the same consider- 
ations apply. This analogy is the justification for the use of the terms 
chosen to describe dh and h/dh in the general case. 

The probable error in any estimate of the dh of eq. (1) may be ap- 
proximately determined as follows. The standard deviation in any 
estimate of a(1) made from m independent observations will be 
a(1)/2/(2m), while that in the estimate a(h) will be a(h)/z/(2m/h). 

8 For the case when h' is not an integer, d =4 and h =3, for instance, the groups would cut up the 
sequences of identical ordinates and the equation for dh would not hold. This defect, which could be 
examined in detail, does not detract, however, from the illustrative value of the analogy, especially 
because its effect vanishes if h is large compared with d, which should be true in any case for this 
technique to be strictly applicable. Of course the value of dh may depend on the way in which the groups 
of h intervals are divided; for instance, whether we begin with the values 1 to h, or 2 to h+l,  etc. Such 
cases occur in geophysics and the possibility must always be kept in mind. This effect in itself may 
sometimes deserve special attention but in order to avoid secondary complexities, let us consider r ( h )  
to be derived from all averages, obtained from all possible combinations, of h successive ordinates. 



Now for a quotient xly, we know that when x and y are independent, 
the standard errors are related by the equation 

(4) [az/u/ ( ~ / 9  (0=/a"1" (a, / T > ~  
as can be found in any treatment of the propagation of error. So here' 
the mean percentage error in dh will be 2/[a2+b2], where a and b are 
the mean percentage errors in the numerator and denominator. For 
large values of h the mean error in an estimate of a(1) will be negligible 
in comparison with the mean error in the estimate of a(h), wherefore 
the mean percentage error in dh will be practically that in a2(h). For 
small values of h the mean percentage errors in the estimates of a2(h) 
and a2(1) may be nearly equal, in which event the above argument 
does not apply. In this circumstance we may set an upper limit to the 
error in dh by assuming the errors in the estimates of a2(h) and a2(1) 
to be always operating in the same direction, giving 2/[az+b2] = 

2/[a2+a2] =2a, or twice the error in either one alone. 
The error in dm of course depends on the method of extrapolation. 

I ts  error must therefore be judged from the behavior of curves such 
as that given in fig. 1where a constant value of dm will be attained only 
if the effect producing the persistence is constant. However, these ap- 
proximations are adequate for the case in hand, for the quantity 
ha2(h)/a2(1) is itself used as a correction and its error must be a second 
order effect. 

IV. APPLICATION 

Adopting Bartels' concept of "effectively independent components" 
we may now reconsider the examples discussed in section 11.In Yule's 
data the total number N of items may be divided into groups of h 
items each. Within each of these groups there are h/d, "effectively in- 
dependent components" (section 111) giving 

as an estimate of the total number of independent components on 
which the correlation coefficient might be based.7 From fig. 1, though 
no accurate estimate of dm may be made due to the large error in extra- 
polating dh, we may safely conclude that dm>15 and that n>3,  so 
that instead of being based on the 45 recorded items, the correlation 
coefficient was actually based on only three independent components, 
whence applying the usual t test we find the significance level a t  P=0.2, 
wherefore the correlation coefficient no longer need be considered 
significant. 

7 Of course more rigid tests would consider both series, which may have different degrees of persist- 
ence. It would be interesting to consider whether the number of effectively independent pairs of values 
might be obtained from the equivalent numbers of independent components in the two series. 



Similarly, for Thomas' example, we find from fig. 2 for the mortality 
series that there are less than five independent pairs of observations so 
that the "significance" does not even reach the level of P=0.6,  and 
we are no longer obliged to find excuses for the result. 

Thus, bearing in mind only the fact that the standard error of a 
correlation coefficient is determined by the number of e$ectively in-
dependent  observations, we see that Bartels' technique provides us 
with a safeguard such that the correlation coefficient becomes harm- 
less, even in inexperienced hands. Furthermore we find that, contrary 
to the conclusions of Yule, the ordinary concepts of statistics do apply 
and the usual tests for significance remain valid. 

V. THE RELATION BETWEEN BARTELS' TECHNIQUE AND THE 

ANALYSIS OF VARIANCE 

In the above examples Bartels' technique was applied to series of 
numbers that are related in time. Since the mathematical operations 
apply only to the numbers, being quite independent of what the num- 
bers represent, the same technique may be applied to series of numbers 
related in space or in any other natural way. 

A typical example is given by the so-called station-year rainfall 
r e c ~ r d . ~In this case we have, let us say, 30 years of observations a t  each 
of 40 neighboring stations. Such a record has been regarded as equiva- 
lent to 1200 years of observations a t  a single station under the same 
general climatic conditions. Accordingly, in the desire to know the 
frequency of occurrence of storms above some specified amount of 
rainfall, and particularly to obtain an estimate of the reliability of this 
frequency, i t  has been customary to assume that a storm magnitude 
which has been reported (say) 12 times in the entire series of observa- 
tions would have a frequency of occurrence of once in 100 years, with 
the implication that this value is fairly reliable, being based on 12 
observations. 

A procedure of this kind is hardly valid, for i t  is probable that these 
12 observations were recorded during only 3 or 4 separate storms, and 
quite possible that all were recorded a t  the 12 different stations during 
a single storm. In fact, by applying the chi-test to  such data we shall 
usually find that the means for the stations are much more alike than 
would be expected for random data. This, however, tells us only what 
we already suspect; namely, that a single storm may be hitting several 
stations simultaneously. Similarly, from the analysis of variance, we 

8 Miami Conservancy District. Engineering Staff, Storm Rainfall of Eastern United Stales (Dayton, 
revised ed., 1936). See however, K. C. Clarke, Transactions American Geophysical Union, 1938. See 
also H. Wold, Stalionaru Time Series (Upsalla, 1938). 



should conclude only that there are unexpectedly large differences 
between the means of the years, with correspondingly small difference 
between the means for the stations. 

We desire, therefore, to segregate in some way the independent 
events, or a t  least to find out how many there are. We are thus again 
faced with the problem of estimating the number of independent com- 
ponents among an arbitrary number of related observations. Resorting 
to the Bartels' technique, we may adapt i t  to an r X s table of a station- 
year record of storms by setting the rows, or years, end to end suc- 
cessively and grouping the resulting series in the manner described 
earlier, using h =2, 3, 4, etc., until the ratio dh seems to have reached 
a constant value. The number d thus arrived a t  will be an estimate of 
the number of stations hit by a single storm. As a matter of fact, the 
number d thus estimated will usually be too small, and we shall ordi- 
narily be safe in saying that the actual number of stations affected is 
still larger, for if a single storm hits several stations, geographically 
adjacent, these stations will in general not all be entered in adjacent 
columns in the table, thus effectively reducing the amount of persist- 
ence, and its index, the number d. Similarly for storms a t  the edge of 
the area, the boundary effect will tend to reduce the number of stations 
affected by a single storm. Thus for a station-year record of storms we 
may safely conclude that the actual average number of stations hit by 
a single storm is larger than d, and the effective length of record even 
shorter than that given by a simple application of the Bartels method. 

In the above example the correlation existed between adjacent items 
in the rows, but examples are easily found in which the persistence is 
mainly in the columns. Thus Fisherg shows a table of the frequencies 
of rain a t  different hours in different months, with successive hours in 
vertical columns. Clearly the fact that i t  is raining a t  any given time 
is not independent of whether i t  was raining one hour earlier, and 
persistence is to be expected. Applying the usual formula for d~ i t  is 
found that d24= 13.1, SO that only about two of each days' observations 
are effectively independent. Cases can also be found in which persist- 
ence has been introduced into both rows and columns. For these, 
special methods will have to be developed. 

Thus we find ourselves in a situation which may be likened to the 
following game. Starting with a set of random numbers such as may be 
taken from Tippett,lo we may allow an assistant (or nature) to perform 
secretly certain operations on these numbers. The problem for the 
statistician is to test the resulting numbers in various ways and to de- 

R. A. Fisher, Statistical Methods for Research Workers (Blackie & Son), table 44. 

10 L. H. C. Tippett, Tracts for Computers No. 15 (Cambridge, 1927). 




duce from his tests what operations have been performed. The analysis 
of variance is a first test, for i t  may help to tell us whether the numbers 
are still random. Bartels' point of view enables us to go one step further 
and specify in certain cases the groupings used in the unknown opera- 
tions. 

There are many interrelations between the Bartels' parameters and 
other statistical conceptions, for example, the Lexis theory of super- 
normal and subnormal dispersion; hence one might expect that his 
parameters may also be expressed in the language of the analysis of 
variance. This is easily demonstrated by considering the mathematical 
formulation of the analysis of variance as given for example by 
1rwin.l' I t  will be found that Bartels' parameters d,,,, and d,,~,. are 
essentially the ratios of the "column mean square" to the "total mean 
square," and the "row mean square" to the "total mean square," re- 
spectively. 

Thus Bartels' parameters may be obtained from the usual analysis 
of variance tables, provided only that the "total mean square," usually 
omitted, is also computed, and i t  should be possible to devise tests of 
significance based on analysis of variance methods which can be carried 
to any desired degree of refinement. 

VI. HARMONIC ANALYSIS 

Among economists the use of harmonic analysis is viewed with a 
healthy skepticism, largely because by its use apparent "real" periods 
are too readily found. Col. M. C. Rorty,12 for example states: 

. . .The fudamental defect in the harmonic analysis is that it will re- 
solve any ordinary business time series into definite regular periodicities, 
regardless of whether any real periodicities exist or not. . . . Probably the 
best indirect proof of the lack of value of the harmonic analysis is to 
create an artificial time series by throwing dice and then to analyze this 
series with and without assumptions as to lag. 

Among physicists, on the other hand, harmonic analysis continues to 
be regarded as one of the most powerful and dependable tools for the 
study of time series of any kind. This curious diversity of opinion seems 
to be founded in the fact that Rorty is speaking of the harmonic 
analysis of Schuster,13 whereas physicists are now using a modern form 
developed mainly by Bartels. This technique has been devised for the 
express purpose of investigating hidden periodicities in geophysical 
time series, which are usually encumbered with random fluctuations, 

" J. 0. Irwin, Proceedings Royal Statistical Society, vol. 94, pp. 284-300, 1931. 
"W. C. Mitchell, Business Cycles (National Bureau of Economic Research, 19271, p. 261. 
18 A. Schuster, Terrestrial Magnetism, vo t  3 ,  pp. 13-41, 1898. 



cycles of changing phase or period, and persistence (serial correlation) 
between successive items, like the refractory time series encountered in 
sociological and economic investigations. Since the publication of 
Bartels' paper of 1935 his technique has been the standard procedure 
among physicists, yet the writer has been informed by "professional 
statisticians" that the Bartels' methods, being based on harmonic 
analysis, are "old-fashioned," and "not accepted by statisticians," 
and (by implication) that were physicists "properly trained" they 
would solve their problems by the use of the analysis of variance. 

That a barrier between the two groups exists is clear from even a 
casual inspection of the literature on time series presented by exponents 
of the respective schools. Both schools accept as fundamental the work 
of the physicist Schuster, which was in turn based on the work of the 
physicist Rayleigh. After this time, however, further work by the in- 
vestigators of the physical school seems to be largely ignored by the 
statistical school and we find two separate lists of standard references 
covering the same subject, with little duplication of authors. The 
statistician apparently reads papers by Moore, Crum, Mitchell, R.  A. 
Fisher, Roos, Snedecor, etc., and adopts S1utzky14 as a classic reference. 
The physicist reads papers by von Laue, Einstein, Taylor, Stumpff, 
and Pollack, and adopts the paper of 1935 by Bartels as his reference 
text. The statistician's development is based on the mathematical 
treatments of probability distributions, serial correlations, etc. The 
physicist's approach is by analogy with problems already solved in 
connection with the kinetic theory of gases, diffusion problems, Brown- 
ian motion, turbulence theory, and physical optics. Perhaps i t  is the 
frequent assumption of familiarity with the analogy which tends to 
make the work of the physical school relatively inaccessible to the pure 
statisticians. Conversely the use of such terms as "graduality" and 
"fluency"15 as introduced by Slutzky for instance, make the statisti- 
cian's work difficult reading for the physicist. 

There is another factor that probably contributes to the segregation 
of the two schools. I t  seems that writers on sociological and economic 
time series have convinced themselves that the methods used in 
physics are valid only for pure sine wave phenomena, whereas these 
are seldom encountered in economic series. 

14 E. Slutsky, Econometrics, vol. 6, pp. 105-146, 1937. 
"The unconnected random waves are usually called irregular sigcags. A correlation between the 

items of a series deprives the waves of this characteristic and introduces into their rising and falling 
movements an element of graduality . . . ." 

"We must distinguish between the pradtralitu of the transitions and their fluency. We could speak 
of the absence of thelatter property if a state of things existed where there would be an equal probability 
for either a rise or fall after a rise as well as after a fall . . . (Slutekyl4.") 

'6 




To the economist, apparently quite certain of the meaning of "real- 
ity," Rorty's statement12 quoted above, for example, constitutes damn- 
ing evidence; to the physicist, grown accustomed to seeing even "solid 
rock" represented by #-waves and matrix elements, it is no evidence a t  
all. The harmonic analysis gives a mathematical model of a time series 
just as the Schrodinger equation gives a mathematical model of an 
atom. The time series behaves as if it were composed of harmonics 
just as the atom behaves as ij it were composed of #-waves, and the 
economist has quite as much right to deal with harmonic components 
that may never be isolated as a physicist has to deal with an equally 
intangible #-wave or matrix element. 

The point is-to put it bluntly-if a period of any conceivable shape 
exists, then the harmonics that it may be composed of will also exist, 
and a test for the "reality" of the harmonics is automatically a test for 
the reality of the original period. That a wave of special shape should 
be indistinguishable from the sum of its harmonics is a totally irrele- 
vant question.16 Bartels' analysis of the 27-day recurrence phenome- 
nons" in magnetic activity gives a beautiful example of a case in which 
no simple physical meaning can be attached to the harmonic compo- 
nents. 

Statements such as that by Rorty are made probably not so much in 
protest against the use of harmonic analysis as against the conclusions 
which are often obtained by its use. In this he is ably and effectively 
seconded by Bartels, in whose hands periodogram analysis has been 
freed from many of the objections that previously were entirely valid. 
For example, regarding Schuster's methods, S1utzkyl* in 1937, states: 

. . .we must give up his criterion when we remember that  among his 
assumptions is that  of independence of successive observations. 

This is true of Schuster's early work, but the technique of Bartels was 
developed in order to avoid just this assumption. 

In Schuster's method, Cdfl) is the amplitude of a sine wave of a 
certain frequency jl obtained by a harmonic analysis of the total ob- 
served time series. For obtaining an estimate of El which Schuster 
called "expectancy," he used his "periodogram" and assumed E equal 
to an average for all frequencies j (supposed to be free of actual 
periods) of the amplitudes C(j). Schuster based this choice of E on the 
assumption that E is independent of the frequency. This equipartition 
of the variance is true for random series in which successive values are 

'quch an ambiguity in interpretations is a commonplace occurrence in modern physics. See, for 
example, the discussion of the coupled pendulum given by C. G. Darwin, The New Conceptions of 
Matter (Macmillan, 1931),p. 170. 



independent, but untrue for actual time series in which successive 
values tend to be alike (persistence tendency), as has often been 
pointed out by Bartels. To avoid this difficulty, which may lead to 
underestimating E many fold, Bartels devised an estimate of E on the 
basis of harmonic analyses for the same frequency jl as that to be 
tested, in suitable subdivisions of the entire series; thus the persistence 
tendency affects E in much the same way as C, tending to cancel its 
effect in the ratio. I t  will be instructive to consider an actual example in 
order to demonstrate his method. 

In table 1a series of numbers was given, representative of an eco- 
nomic time series. To illustrate Bartels' approach, suppose that these 
represent yearly values and that we wish to test for the reality of the 
nine year period frequently reported in the literature of economics, 

-30 
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Fig. 4.-Harmonio dial for the data of Table I! 

The values are arranged in seven groups of nine years each; the 
groups are numbered I to VII, the years in each interval from 0 to 8. 
Each group is harmonically analyzed to yield a sine wave, 

c sin (t + a) 

with time t reckoned from the middle of year 0 of group I, and in- 
creasing by 27r in nine years. The results are plotted in the "harmonic 
dial" of fig. 4 which replaces the usual phase diagram. The nine year 
sine wave for each group is represented by the points numbered I to 
VII, or by the vector connecting the origin 0 with these points. This 
vector indicates by its length the amplitude c, and by its direction the 



phase a which is taken as zero for the direction from zero toward the 
right, increasing counter-clockwise. The scale for the amplitude c is 
indicated; the time when each sine wave reaches its maximum can be 
read from the scale around the edge of the dial where the figures 0 to 8 
indicate the midpoints of each nine year group. The average sine wave 
of a nine year period, obtained by a harmonic analysis of the total 
7X9=63 years is indicated by the "average vector" OA. Now A is the 
mass center of the "point cloud" formed by the seven dots for the indi- 
vidual years, and this property of A may be used to test whether OA 
can be regarded as real, or whether it can be explained by a chance 
occurrence. The average vector OA has an  amplitude of 13.1 units, and 
the root-mean-square amplitude of the seven individual waves is 25.2 
units. Under random conditions the expectancy for the average ampli- 
tude of the seven individual waves is 25.2/2/5 =9.5 units. Among sever- 
al possibilities for the test under consideration Bartels chooses two: 

(a) We suppose that the seven dots are chosen a t  random from a 
point cloud of a normal distribution, with root-mean-square 
amplitude 25.2 units and centered a t  0 .  What i s  the probability 
that the average vector OA (= 13.1 units) exceeds its expectancy 
(=9.5 units) in the ratio lc =13.1/9.5 =1.38? The answer to  this 
question, familiar in Brownian motion and random walk prob- 
lems, id7 

(6) Pa= e-k2= 1/7. 
(b) We suppose that the seven dots are chosen from a point cloud 

centered a t  A with root-mean-square distance from A to  be cal-
culated in the usual way as 2/(25.22-13.12) =21.6. The expec- 
tancy for the distance of the mass center of the seven dots from 
A is then 21.6/4? or 8.2. The probability that this mass center 
is more than OA =13.1 units distant from A is with lc =13.1/8.2, 

Thus both of these formulations lead to probabilities for chance oc- 
currence of the order P =  1/10, which is hardly sufficient to warrant 
the contrary assumption of reality. As pointed out by Bartels, even 
these estimates of P may be too favorable to the assumption of reality 
because the data may be affected by ('quasi-persistence." 

17 This calculation is made under the assumption that 25.2 is the root-mean-square amplitude for 
a long series of random points, of which these seven may be a random sample. Actually the standard 
deviations of samples of seven random points are not constant, but fluctuate from one sample to another, 
and the calculation made here does not take these fluctuations into account. While this might be done 
the result of such a calculation could hardly be called a refinement because it would remain subject to 
fluctuations. What is more, the phenomenon of "quasi-persistencen may be, and probably is, present. 
so i t  seems satisfactory merely to  regard Pa itself as subject to  fluctuations. 



Thus our task would be finished, except for the fact that applying the 
tests of significance available in the literature at  the time he made his 
study, Greensteinla finds from the very same data, which give the num- 
ber of business failures per 10,000 business concerns for the years 1867- 
1929, the probability of a chance occurrence for a 9.14 year period to 
be only P=1/1790. Furthermore, by refinements (locating the period 
more accurately as 9.43 years), Greenstein reduces this value to 
P =1/30700 by Schuster's method, and to 1/5520 by fisher'^.'^ 

While Greenstein himself is properly skeptical of the reality of the 
nine year period, the mathematical result obtained cannot be dismissed 
lightly as one of those cases in which a wrong result unfortunately 
creeps into the literature. This work was done under the direction of the 
late Henry Schultz a t  Chicago, and C. F. Roos20 has stated that this 
paper by Greenstein is a "lucid description" of the Schuster technique 
for periodogram analysis. The fact seems to be that Greenstein used 
the best technique generally available to economists a t  the time he 
made his study. 

Now Greenstein used Fisher's formula for his significance test, an 
this formula is derived on the assumption of independence of successive 
ordinates. That this condition is not satisfied by Greenstein's data is a t  
once apparent from his periodogram in fig. 5, for to an unbiased 
observer this curve is not so much characterized by high values near 
nine years as by low values below six years. This is just as is to be ex- 
pected if serial correlation is present, for this effect suppresses any high 
frequency oscillations, since successive values tend to be alike. We may 
therefore suspect thatBartelsl result is the more nearly correct, especial- 
ly since it agrees with our common sense judgment; but it would be of 
interest to attempt to correct for persistence in Fisher's formula so as 
to bring the results into better agreement. Thus we are again con- 
fronted with the problem of estimating in some way the number of 
independent components among any number of related ordinates. 

Returning to Greenstein's data, since we have shown in fig. 3 that 
d,=2.5 for this case, we divide the total number of items (66) by 
dm =2.5 to obtain the number of "effectively independent items" (26). 
Using this value in Fisher's formula, we get 

and the embarrassing discrepancy between the results of Bartels' test 
ahd Fisher's test disappears. Thus both Bartels' and Fisher's formulas 

18 B. Greenstein, Econometrica, vol. 3, pp. 170-198, 1935. 

19 R.A. Fisher, Proceedings Royal Society, vol. 75, pp. 54-59, 1929 

Po C.F.Roos, Econometrica, vol. 4, pp. 368-381, 1936. 




give reasonable results when discreetly used. I t  may not be amiss how- 
ever to point out that, as used by Greenstein, any desired increase in 
the significance of his nine year period could be obtained with Fisher's 
formula merely be recording monthly, daily, or hourly values of busi- 
ness failures over the time interval in question, for although Fisher's 
treatment remedied one defect in Schuster's method, he neglected to 
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Fig. 6.-Periodogram for percentage ratios of buainess failures to total number of business 
concerns in United States, 1867-1932 (after Greenstein). 

consider the overwhelming effect of a persistence tendency on the 
periodogram and its consequent effect on tests for reality. 
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ment this paper would never have been written. The writer wishes also 
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colleagues with whom he has discussed various aspects of the problems 
considered. 


